
 

Journal Pre-proof

Asymmetric Cell-DEVS Models with the Cadmium Simulator

Román Cárdenas , Gabriel Wainer

PII: S1569-190X(22)00119-8
DOI: https://doi.org/10.1016/j.simpat.2022.102649
Reference: SIMPAT 102649

To appear in: Simulation Modelling Practice and Theory

Received date: 6 April 2022
Revised date: 18 August 2022
Accepted date: 22 August 2022

Please cite this article as: Román Cárdenas , Gabriel Wainer , Asymmetric Cell-DEVS Mod-
els with the Cadmium Simulator, Simulation Modelling Practice and Theory (2022), doi:
https://doi.org/10.1016/j.simpat.2022.102649

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

https://doi.org/10.1016/j.simpat.2022.102649
https://doi.org/10.1016/j.simpat.2022.102649


Asymmetric Cell-DEVS Models with the Cadmium Simulator 

Román Cárdenasab and Gabriel Wainerb 

aLaboratorio de Sistemas Integrados, Universidad Politécnica de Madrid, Madrid, 

Spain; bSystems and Computer Engineering, Carleton University, Ottawa, Canada. 

CORRESPONDING AUTHOR: Román Cárdenas. Email: r.cardenas@upm.es 

ABSTRACT 

Cellular models provide a natural approach for describing the behavior, dynamics, 

and structure of natural systems with spatial features. The classic Cell-DEVS 

formalism allows us to define discrete-event cellular models as a lattice of cells in 

which cell states are updated asynchronously over a continuous time base with 

explicit timing delays. However, it cannot define scenarios with irregular cell 

shapes. Here we present asymmetric Cell-DEVS, a formalism that supports the 

definition of cellular models with irregular topologies and complex relationships 

between cells, allowing us to model more realistic scenarios. We also include a 

prototype implementation of this formalism using the Cadmium simulator and 

illustrate the use of this formalism and tools by presenting different cellular models 

combined with geographical data to provide realistic results. 

KEYWORDS: cellular models; discrete-event modeling and simulation; DEVS 

  

                  



1. Introduction 

Numerous natural systems show great complexity in their behavior, dynamics, and 

structure, making it difficult to describe them mathematically (Wolfram, 1984). Cellular 

models provide simple abstractions of these systems, enabling the study of geographical 

and temporal changes on them (Janelle, 2005). Among the different approaches for 

implementing cellular models, Cellular Automata (CA) (Toffoli and Margolus, 1987) is 

one of the most popular methods. CA is a discrete-time formalism that is typically 

conceived as a lattice of cells. Each cell behaves as a Finite State Machine (FSM) and 

computes its next state according to its previous state and the previous state of nearby 

cells (i.e., the cell neighborhood). CA has been successfully used in multiple disciplines, 

such as chemistry (Gerhardt and Schuster, 1989), biology (Hatzikirou et al., 2012), or 

generative arts (Ashlock and Kreitzer, 2020). 

In CA, cells state transitions are computed synchronously in a discrete-time base, 

constraining the precision of the simulations. Furthermore, multiple cells do not transition 

to new states in every step, compromising the computation efficiency of the simulated 

models. Additionally, the CA formalism is not easy to combine with other approaches 

(Wainer and Giambiasi, 2001). The Cell-DEVS formalism (Wainer, 2009) combines CA 

with the Parallel Discrete Event System Specification (PDEVS) (Zeigler et al., 2000) to 

overcome these issues. PDEVS is a revision of the original Discrete Event System 

Specification (DEVS). PDEVS is currently the prevailing DEVS variant. In the 

following, the use of the DEVS word implies PDEVS formal specifications. 

Cell-DEVS allows us to define discrete-event cellular models in which cell states 

are updated asynchronously over a continuous time base, removing unnecessary 

computations and increasing the accuracy of the results. Furthermore, as Cell-DEVS is 

defined on top of the DEVS formalism, it is easy to integrate with models described with 

DEVS or other formalisms (Vangheluwe, 2000). The CD++ toolkit (Wainer, 2002) is a 

simple framework for implementing Cell-DEVS models. These models are executed 

asynchronously and provide a continuous time base for improving the accuracy of the 

simulations. CD++ has been successfully used in different research areas (e.g., building 

evacuation protocols (Wang et al., 2012), CO2 diffusion models (Khalil et al., 2020), or 

epidemics (Cárdenas et al., 2020)). 

Nonetheless, current tools for simulating Cell-DEVS models present some 

limitations. For example, they only support typical CA models that divide the scenario in 

a regular grid of cells. This approach hinders the integration with spatial systems with 

irregular topologies, for instance Geographic Information Systems (GISs), which follow 

a vectorial approach to describe spaces with irregular topologies (Chang, 2019). In these 

scenarios, alternative modeling approaches show better results. For instance, 

metapopulation models (Hanski, 1994) divide the system into multiple populations with 

different characteristics that interact with each other. The relationship between every pair 

of groups is defined separately. Furthermore, current Cell-DEVS tools integrate a low-

level interface for describing aspects of the Cell-DEVS models (e.g., cells state transition 

functions or neighborhoods). This interface makes defining different scenarios for 

exploring the search space of the system under study cumbersome. Finally, current Cell-

                  



DEVS tools cannot easily use third-party software for more advanced models (e.g., 

TensorFlow (Abadi et al., 2016) for representing the cells state transitions using complex 

machine learning models). 

In this paper, we present the asymmetric Cell-DEVS formalism, a new flavor of 

Cell-DEVS. While the classic Cell-DEVS formalism has been used for scenarios with 

regular topologies, it relies heavily on isotropic geometries. Asymmetric Cell-DEVS is a 

generalization of classic Cell-DEVS that integrates concepts of CA and metapopulation 

models to define cellular models with complex topologies and dynamics. It uses a 

continuous time base and avoids unnecessary state transition computations. Moreover, as 

it relies on the DEVS formalism, we can easily combine asymmetric Cell-DEVS models 

with other DEVS models. 

In addition, we present a new version of the Cadmium simulator (Belloli et al., 

2019) that supports the implementation of asymmetric and classic Cell-DEVS scenarios. 

This new implementation is a flexible, header-only C++ (Stroustrup, 2013) library that 

allows users to implement custom cellular models with complex state transitions and 

timing behaviors. It also integrates a high-level interface for configuring Cell-DEVS 

scenarios using JavaScript Object Notation (JSON) files (Bray, 2017). This interface 

allows reusing a base Cell-DEVS model to execute different setups effortlessly. 

Furthermore, using JSON instead of any other notation format eases the integration with 

web-based tools and the readability of the scenario setup. It also simplifies the integration 

with GIS models that use the GeoJSON format (Butler et al., 2016). Cadmium eases the 

development and simulation of computational models based on the asymmetric Cell-

DEVS formalism, as modelers do not have to worry about simulation details, and they 

can focus on implementing the logic of their conceptual models only. 

The remainder of this paper is organized as follows. Section 2 presents related 

work. In Section 3, we present the asymmetric Cell-DEVS formalism, an extension of the 

classic Cell-DEVS formalism to support scenarios with irregular shapes. Section 4 

describes the new version of the Cadmium simulator. We focus on its new Application 

Programming Interface (API) and the semantics supported by JSON configuration files 

for defining asymmetric and classic Cell-DEVS models. We illustrate how the 

asymmetric Cell-DEVS formalism and Cadmium can assist modelers in developing 

cellular models in Section 5. We also enumerate a set of successful use cases that follow 

this approach. Section 6 draws the main conclusions of this work. 

2. Related Work 

The modeling of natural systems aims to capture the behavior of biological processes to 

understand the relationships and dynamics of these systems (Wolfram, 1984). For 

example, models for pandemic spread may assist us with the definition of effective 

contention policies to reduce the impact of the disease. The COVID-19 outbreak has 

shown that modeling and simulation methodologies are valuable for understanding the 

disease and assessing the effect of different approaches to diminish its propagation speed 

(Adiga et al., 2020). Numerous proposals follow the approach presented by Kermack & 

McKendrick (1927), which classifies the population into three compartments: susceptible 

                  



(S), infected (I), and can recovered (R). This model is known as the SIR compartmental 

model. Figure 1 shows a schematic of the SIR model. 

 

Figure 1. Schematic of the SIR compartmental model. 

People that have never been infected remain in the S compartment. Infected individuals 

are assigned to the I group. People in this compartment can infect the susceptible 

population. Once infected individuals recover from the disease, they transition to the R 

compartment. The SIR model describes the dynamics between compartments with a set 

of Ordinary Differential Equations (ODEs). Different works extended this model with 

new compartments (e.g., deceased (D)) and new dynamics between compartments (e.g., 

immunity loss) (Tang et al., 2020). However, these models rely on the law of large 

numbers and cannot capture interactions between groups across both time and space. 

Several state-of-the-art works combine SIR-based compartmental models with cellular 

models to integrate the spatial aspects of the spread of the disease (Bin et al., 2019). 

CA is one of the most popular approaches to define cellular models. CA is a 

discrete space-time formalism built as a lattice network of cells (Wolfram, 2002). In 

classic cellular models, cells are arranged uniformly in an n-dimensional lattice. A grid 

cellular scenario is characterized by the following parameters: 

• Shape: n-tuple that defines the dimension of the scenario. Usually, n ∈ {1, 2, 3}. 

• Origin cell: it indicates which cell is considered the first cell of the scenario. The 

other cells are numbered according to their position with respect to the origin cell. 

• Wrap: wrapped scenarios connect the scenario boundaries with their opposite 

boundary. For instance, a wrapped 2-dimensional scenario connects cells in the 

left boundary with the cells in the right boundary, and uppermost cells are 

connected to lowermost cells. Wrapped scenarios can be thought of as n-cubes. 

Figure 2 shows an example of a classic cellular model. In this example, the shape of the 

scenario is ⟨3,4⟩ (i.e., a 3 by 4 2-dimensional cell grid). The origin cell is (1,1). Therefore, 

cell (2,1) is below the origin cell, and the cell (1,2) is to the right of cell (1,1). The shown 

scenario is wrapped. Thus, even though cell (1,4) corresponds to the upper-right corner 

of the scenario, cell (1,1) is to its right, and cell (3,4) is above it. 

S I R

new

infections

new

recoveries

                  



 

Figure 2. Example of classic cellular model. 

CA are formally defined with the following quadruple: 

 CA = 〈Sn, Θ, N, τ〉, (1) 

where: 

• Sn is the n-dimensional working space. Usually, n ∈ {1, 2, 3}. 

• Θ is the set of states. At time step t, the state of any cell corresponds to one of 

these states: 

 ∀t, ∀i ∈ Sn, θi
(t)

∈ Θ. (2) 

• N is the neighborhood set. It contains relative positions of the neighboring cells 

concerning a given cell. 

• τ: Θ|𝑁| → Θ is the local computation function. It comprises a set of rules to obtain 

the new state of all the cells at every time step: 

 ∀i ∈ Sn, θi
(t+1)

= τ ({θi+j
(t)

 | j ∈ N}). (3) 

The neighborhood set in CA models is defined as a set of distance vectors. Every cell of 

the scenario can compute its neighboring cells by summing its location and each distance 

vector in the neighborhood set. For example, in a 2-dimensional scenario, if the 

neighborhood set is N = {(1,0), (0,0), (0,1), (−1,0), (0, −1)}, the neighboring cells of 

cell (i, j) are (i + 1, j), (i, j), (i, j + 1), (i − 1, j), and (i, j − 1). This neighborhood set is 

common in the literature and is known as the von Neumann neighborhood of range 1, or 

simply the von Neumann neighborhood. For a given cell, the von Neumann neighborhood 

of range r ∈ ℕ is the set of cells in the scenario which Manhattan distance is less than or 

equal to r. Another popular cellular neighborhood is the Moore neighborhood. For a given 

cell, the Moore neighborhood of range r ∈ ℕ is formally described as the cells in the 

scenario which Chebyshev distance is less than or equal to r. Figure 3 represents these 

popular neighborhoods for 2-dimensional scenarios. 

(1,1) (1,2) (1,3) (1,4)

(2,1)

(3,1)

(2,2) (2,3) (2,4)

(3,2) (3,3) (3,4)

(1,1)

(2,1)

(3,1)

(3,4)(3,3)(3,2)(3,1)

(1,4)

(2,4)

(3,4)

(1,4)(1,3)(1,2)(1,1)

(3,1)

(1,4) (1,1)

(3,4)

                  



  

(a) von Neumann neighborhood (r = 1). (b) Moore neighborhood (r = 1). 

  

(c) von Neumann neighborhood (r = 2). (d) Moore neighborhood (r = 2). 

Figure 3. Schematic of von Neumann and Moore cellular neighborhoods. 

Usually, the cell space uses a rectangular topology, in which each cell is represented as a 

rectangle. However, previous works proposed alternative lattice patterns like hexagons 

(Tariq and Kumaravel, 2016). Furthermore, Baetens & De Baets (2012) extend the CA 

formalism to support irregular tessellations. CA has been successfully used to describe 

the dynamics in natural systems, such as the course of braided rivers (Murray and Paola, 

1994) or urban development (Ward et al., 2000). 

In CA, the state of all the cells in the cell space are recomputed at every time step 

in synchronous fashion. However, usually, only a few cells update their state at a given 

time step. Thus, cells whose state remains unchanged add an unnecessary computation 

overhead. This overhead is greater for simulations that need shorter time steps for better 

time precision. 

Different research have defined asynchronous CA (Ingerson & Buvel, 1984, 

Fatès, 2013, Dennunzio et al., 2017) to avoid these problems. However, these approaches 

still present some limitations inherent to the CA formalism (e.g., limited model 

complexity and closure to external events (Muzy et al., 2005)). Combining CA with the 

DEVS formalism has shown success in addressing these issues. DEVS (Zeigler et al., 

2000) is a hierarchical and modular approach to describe discrete-event systems. The 

DEVS formalism describes systems at two levels: atomic models, which define the 

behavior of a system as transitions between states and response to external events; and 

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1)

(i+1,j-1)

(i,j) (i,j+1)

(i+1,j) (i+1,j+1)

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1)

(i+1,j-1)

(i,j) (i,j+1)

(i+1,j) (i+1,j+1)

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1)

(i+1,j-1)

(i,j) (i,j+1)

(i+1,j) (i+1,j+1)

(i-1,j+2)

(i,j+2)

(i+1,j+2)

(i-2,j+2)(i-2,j+1)(i-2,j)(i-2,j-1)

(i+2,j+2)(i+2,j+1)(i+2,j)(i+2,j-1)

(i-1,j-2)

(i,j-2)

(i+1,j-2)

(i-2,j-2)

(i+2,j-2)

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1)

(i+1,j-1)

(i,j) (i,j+1)

(i+1,j) (i+1,j+1)

(i-1,j+2)

(i,j+2)

(i+1,j+2)

(i-2,j+2)(i-2,j+1)(i-2,j)(i-2,j-1)

(i+2,j+2)(i+2,j+1)(i+2,j)(i+2,j-1)

(i-1,j-2)

(i,j-2)

(i+1,j-2)

(i-2,j-2)

(i+2,j-2)

                  



coupled models, which specify how subcomponents of the system interconnect. The 

formal definition of an atomic model is described as the following: 

 A = 〈X, Y, S, δint, δext, δcon, λ, ta〉, (4) 

where: 

• X is the set of input events. Each element corresponds to a possible input event 

that may trigger the atomic model’s external transition function. 

• Y is the set of output events. Each element corresponds to a possible output event 

that may be triggered by the atomic model’s output function. 

• S is the states set. At any given time, the state of the atomic model is s ∈ S. 

• ta: S → ℝ≥0 ∪ ∞ is the time advance function. When the atomic model transitions 

to the state s, it will remain in this state for ta(s) time units or until the model 

receives one or more inputs. 

• δint: S → S is the internal transition function. After spending ta(s) time units in 

the state s without receiving any input event, the atomic model transitions to the 

state s′ = δint(s). 

• λ: S → Y is the output function. When the atomic is about to change its state due 

to an internal transition, the atomic model generates λ(s) ⊆ Y output events. This 

function is triggered right before calling the internal transition function. 

• δext: S × ℝ≥0 × X → S is the external transition function. It is triggered when the 

atomic model receives a bag of inputs x ⊆ X after e time units since the atomic 

model transitioned to its current state s (i.e., 0 ≤ e ≤ ta(s)). When triggered, 

δext(s, e, x) determines the new state of the atomic model. 

• δcon: S × ℝ≥0 × X → S  is the confluent transition function. This transition 

function decides the next state in cases of collision between external and internal 

events (i.e., e = ta(s)). Typically, δcon(s, ta(s), x) = δext(δint(s),0, x). 

The formal definition of a coupled model is described as follows: 

 M = 〈X, Y, C, EIC, IC, EOC〉, (5) 

where X is the set of inputs; Y is the set of outputs; C is the set of DEVS subcomponents; 

EIC is the external input coupling relation, from external inputs of M to component inputs 

of ci ∈ C ; IC  is the internal coupling relation, from components outputs of ci ∈ C  to 

component inputs of cj ∈ C ; and EOC  is the external output coupling relation, from 

component outputs of ci ∈ C to external outputs of M. 

In most cases, cellular models described with DEVS require expertise in 

programming, leading to multiple specific single-use programs which are difficult to 

reuse for related experiments (Wainer, 2006). The Cell-DEVS formalism (Wainer, 2009) 

proposes a simple and generic way of defining discrete-event cellular models with 

advanced timing behavior. Each cell is a continuous-time model in which state transitions 

                  



are defined by a local computation function, as in CA. It also provides different delay 

functions that simplify complex timing definitions. This approach allows us to define CA 

models with advanced timing behavior while using the formal specifications of DEVS. 

Section 3 provides an in-depth description of the Cell-DEVS formalism. 

Cellular models usually divide the space into uniform cells with the same 

behavior. Additionally, the relationship between these cells is described implicitly with 

the neighborhood set. However, even though these assumptions are an advantage for 

formal analysis, they are sometimes overly simplistic (Hanski and Simberloff, 1997). 

Metapopulation models propose a different approach to study the dynamics of 

groups that interact at some level (Hanski, 1994). These models divide the system into 

multiple populations. Each population has a different location and different 

characteristics (e.g., number of inhabitants). Additionally, metapopulation models 

describe the relationship between every pair of groups separately. Thus, the interaction 

between groups is heterogeneous and is more accurate than in cellular models. 

Metapopulation models have shown success in describing epidemics (Watts et al., 2005), 

biodiversity in natural areas (Muneepeerakul et al., 2007), and demographics of species 

(Heide-Jørgensen et al., 2013). 

Some works aim to integrate aspects of metapopulation models to CA. For 

example, Sonnenschein & Vogel (2001) propose the Asymmetric Cellular Automaton 

(ACA) formalism. ACA substitutes the neighborhood of CA with a topology matrix, 

which describes the neighborhood degree of two cells. The neighborhood degree 

represents how strongly a neighboring cell influences another cell. Every cell in the 

scenario assigns a different neighborhood degree to each neighboring cell, allowing 

asymmetric neighborhood relations. Additionally, the ACA formalism includes a global 

state. The global state describes the characteristics of the scenario that affect all cells in 

the model but, in contrast to the cell state, cells cannot modify directly (e.g., wind 

direction for fire spreading models). The variables that make up the global state evolve 

independently of the scenario cells. Zhong et al. (2009) employ this formalism to define 

a CA model for the spread of infectious diseases where cells are irregular regions of a 

city, and the neighborhood degree is computed as a function of the shared border width 

and the number of roads that interconnect these regions. In this paper, we present the 

asymmetric Cell-DEVS formalism to support discrete-event cellular models based on 

metapopulation systems. This new formalism is compatible with conventional cellular 

models and provides mechanisms to define global states for all the cells in the scenario. 

3. The Asymmetric Cell-DEVS Formalism 

This section defines the asymmetric Cell-DEVS formalism. Then, we illustrate how this 

formalism contains the classic Cell-DEVS approach based on a uniform lattice of cells. 

3.1. Formal Definition of the Asymmetric Cell-DEVS Formalism 

In the asymmetric Cell-DEVS formalism, each cell may have different behavior, and they 

                  



are not necessarily arranged in a regular lattice. Thus, unlike traditional cellular models, 

neighborhoods can be diverse for every cell. Next, we describe all the elements that 

comprise the Cell-DEVS formalism. We use the example shown in Figure 4 to illustrate 

the principal concepts of the proposed asymmetric Cell-DEVS formalism. 

 
(a) Map of the five Regions of Denmark with the borders to other countries. 

 
(b) Representation of an asymmetric Cell-DEVS model for Denmark. 

Figure 4. Example of an asymmetric Cell-DEVS model. 

Let us assume we want to study the movement of individuals between the five Regions 

of Denmark presented in Figure 4a (identified as C1-C5). We also want to assess the 

influence of the connections with bordering countries (namely, Germany and Sweden). 

Figure 4b shows the structure of an asymmetric Cell-DEVS coupled model representing 

the system under study. Asymmetric Cell-DEVS models are regular coupled DEVS 

models that are formally described as follows: 

 CD = 〈X, Y, C, EIC, IC, EOC〉, (6) 

C3

C1

C2

C4

C5

To/From Germany

To/From Sweden

C1

C2

C3

C4

C5

From Germany

From Sweden

To Germany

To Sweden

low (e.g., 0.2)       

medium (e.g., 0.4)

high (e.g., 0.8)      

                  



where: 

• X is the input set. It defines the possible inputs that the Cell-DEVS model may 

receive. 

• Y is the model output set. It describes every potential output that the Cell-DEVS 

model may generate. 

• C is the subcomponent set. It defines all the cells in the model. 

• EIC is the external input coupling set. It maps inputs of X with inputs in each cell 

Ci ∈ C in the model. 

• IC is the internal coupling set. It defines the interconnections between the cells in 

the model. We say that cell Ci ∈ C is influenced by cell Cj ∈ C if the IC set maps 

outputs in cell Cj  to inputs of cell Ci . Alternatively, we say that cell Ci  is a 

neighbor of Cj if the IC set maps outputs of Ci to inputs of cell Cj. 

• EOC is the external output coupling set. It maps outputs of cells to the Y set. It 

allows us to forward information about the scenario to other DEVS models. 

In the example of Figure 4, there is one cell per Region of Denmark (i.e. C =

{C1, C2, C3, C4, C5}). Figure 4b represents the EIC set by the dashed edges that link inputs 

from Sweden and Germany to the cells C5  and C3 ; and the EOC set is depicted with 

dashed edges that link cells C3  and C5  to Germany and Sweden. Finally, Figure 4b 

represents the IC set with solid edges that link the cells. For instance, cell C2 is influenced 

by C1, C2, C3, and C4. On the other hand, C3, C4, and C5 are neighbor cells of C4. 

Each cell Ci ∈ C of the scenario is formally defined as follows: 

 Ci = 〈Xi
N, Xi

E, Yi, Si, Ni, τi, di, delayi〉, (7) 

where: 

• Xi
N is the neighborhood input set. It defines the possible inputs that the cell may 

receive from neighboring cells in the Cell-DEVS model. 

• Xi
E is the external input set. It enumerates inputs that the cell may receive not from 

neighboring cells (e.g., inputs from a different DEVS or Cell-DEVS model). We 

use the cell input set Xi = Xi
N ∪ Xi

E to refer to the neighborhood and external input 

sets together. It represents all the potential inputs that the cell may receive. 

• Yi is the cell output set. It describes all the possible output events of the cell. 

• Si is the cell state set. It enumerates the possible states of the cell. 

• Ni is the cell neighborhood set. It enumerates all the neighboring cells of the cell. 

• τi: Si × Ni × Xi → Si is the local computation function of the cell. When triggered, 

it computes the new state of cell Ci from its previous state, the neighborhood set, 

and inputs. 

• di: Si → ℝ≥0 is the cell delay function. When the cell transitions to a new state 

si ∈ Si, it waits for di(si) time units before sharing with other cells this change. 

                  



• delayi is the cell delay type function. These functions allow us to define complex 

timing behavior effortlessly. We provide more details about these functions later. 

The external input set Xi
E, enables modelers to use state variables that provide global 

information. For example, in forest fire spread models, an external DEVS model can be 

used to model the wind flow, and cells in the scenario could use Xi
E to receive inputs 

notifying wind direction changes. 

In cellular models, the state of neighboring cells has an influence on the cell state. 

In asymmetric Cell-DEVS, the neighboring cells are not necessarily the immediate nearby 

cells (for instance, C5 could be connected to C1), and not all the neighbor cells affect the 

cell behavior in the same way. For example, when modeling a geography-based cellular 

model like the one in Figure 4, the length of the border shared with each neighboring cell 

varies. Asymmetric Cell-DEVS represents this by associating the vicinity factor Vi
j
, which 

describes how the state of the neighboring cell Cj  affects the state of cell Ci . The 

neighborhood set Ni is defined as a set of pairs ⟨cell ID, vicinity factor⟩ for each of the 

neighboring cells of cell Ci: 

 Ni = {〈Cj, Vi
j〉|Cj is neighbor of Ci and Vi

j
 the vicinity factor of Cj over Ci}. (8) 

Figure 4b shows the vicinity factor using different colors for each of the solid edges from 

neighboring cells. For instance, if an edge from a neighboring cell to the origin cell is 

black, this represents a high vicinity factor. On the other hand, dark and light gray edges 

correspond to medium and low vicinity factors, respectively. In this example, high, 

medium, and low vicinity factors correspond to 0.8, 0.4, and 0.2, respectively. In this way, 

a cell can use the vicinity factor to ponder the effect of each neighboring cell. For instance, 

the neighborhood set of the cell C4 is N4 = {⟨C3, 0.2⟩, ⟨C4, 0.8⟩, ⟨C5, 0.4⟩}. This means 

that the state of cell C4 has a high influence on itself (e.g., most of its inhabitants do not 

leave this cell), while the state of cells C3 and C5 have a low and medium influence, 

respectively (e.g., it is more usual to have individuals moving from cell C5 to C4 than 

from cell C3). Thus, when transitioning to a new state, cells will pay more attention to the 

status of neighboring cells with higher associated vicinity factors. Vicinity factors allow 

modelers to define more complex dynamics between cells, which can potentially increase 

the accuracy of the simulation results. Asymmetric Cell-DEVS models can be thought of 

as directed graphs with weighted edges (Gansner et al., 1993) in which cells are the nodes 

and the edges connect neighboring cells with influenced cells. The weight of an edge 

from Cj to Ci corresponds to the vicinity factor Vi
j
. 

Figure 5 represents the behavior of a cell in asymmetric Cell-DEVS. 

                  



 

Figure 5. Schematic of a cell in the asymmetric Cell-DEVS formalism. 

At any given time, the state of cell Ci is si ∈ Si. When Ci receives input messages x ⊂ Xi, 

it executes the local computation function τi(si, Ni, x) = si
′. The cell new state si

′ depends 

on its previous state, its neighborhood set, and the received input messages. If the new 

state is equal to the previous state (i.e., si = si
′), the cell passivates and stops computing. 

Otherwise, it schedules an output of the new state value after the time specified by the 

cell delay function di(si
′). To do so, we might need to use an output queue qi, which is 

updated according to the cell delay type function, delayi. Delay type functions allow us 

to define complex timing behavior effortlessly. These functions have three input 

parameters: the previous output queue qi, the state change to be scheduled si
′, and the 

delay to wait before sending the corresponding message di(si
′); and return a new output 

queue with the new scheduled message: 

 qi
′ = delayi(qi, si

′, di(si
′)). (9) 

The output queue qi contains tuples 〈ϑ, σ〉, where ϑ ∈ Si is a previously scheduled output 

and σ is the time to wait before sending it. If qi is empty, the cell passivates. Otherwise, 

it waits until one or more scheduled messages expire and sends them. 

The original Cell-DEVS formalism defines two types of delay type functions, 

both based on logical circuit theory (Huang et al., 2009): 

• Transport delay. It is based on ideal digital devices with infinite frequency 

response, in which any input pulse, no matter how short it is, produces an output 

pulse. It adds to the output queue a new message for every cell phase change: 

 transport(qi, si
′, di(si

′)) = {〈si
′, di(si

′)〉} ∪ qi. (10) 

• Inertial delay. It is based on more realistic electronic circuits which do not have 

infinite frequency response, so very short input stimuli are ignored. The inertial 

delay function presents a preemptive behavior, as the output queue can only 

contain one message at a given time. Therefore, if the cell changes its state, all the 

previously scheduled messages are dropped from the queue: 

 inertial(qi, si
′, di(si

′)) = {〈si
′, di(si

′)〉}. (11) 

Figure 6 illustrates the difference between these delay type functions. The abscissae 

                  



represent the simulation time. In this example, the cell state keeps track of the number of 

external transitions triggered by the cell. The delay function returns the value of the cell 

new state (i.e., d(si
′) = si

′). 

 
(a) Transport delay function. 

 
(b) Inertial delay function. 

Figure 6. Comparison of transport and inertial delay functions. 

In both cases, the initial cell state is si = 0, and its output queue contains a scheduled 

message with a delay of 0 (i.e., qi = {〈0,0〉}). At t = 0, the cell outputs the scheduled 

message and receives input messages with the initial state of its neighboring cells. The 

local computation function sets si to 1, and the output queue schedules a new message 

with a delay of di(1) = 1. The cell outputs it at t = 1, leaving the output queue empty. 

At t = 2, the cell receives a new message and transitions to si = 2. The output 

queue schedules a message with a delay of di(2) = 2. At t = 4 the scheduled message 

expires, and the cell outputs it. At the same time, it receives new inputs. Thus, the cell 

transitions to the phase si = 3. The delay to be applied is di(3) = 3. Thus, the cell 

schedules an output message at t = 4 + 3 = 7. 

At t = 6 (i.e., before outputting the scheduled message), the cell receives new 

inputs, transitions to a new state si = 4. The cell must wait for di(4) = 4 time units. 

Therefore, the output queue schedules a new message at t = 6 + 4 = 10. Here, we can 

observe the difference between the transport and inertial delay functions. The transport 

delay function updates the delay to be applied to the message previously scheduled in the 

queue (i.e., qi = {〈3,1〉, 〈4,4〉}). On the other hand, the inertial delay function drops it 

(i.e., qi = {〈4,4〉}). 

The transport delay function can schedule new events before previously queued 

messages. For example, if output messages represent individuals moving from one cell to 

                  



another, people may move at different speeds, and a fast person can overtake a slow 

person that started moving before. However, in other cases (e.g., epidemic models), 

messages normally include the sender cell state value. For these models, receiving 

messages in reverse order may lead to inconsistencies, as cells might receive outdated 

copies of the state of their neighboring cells. 

To avoid these issues, we now include a hybrid delay function. This function 

behaves as the transport delay, however, when scheduling a new phase change, it 

preempts all the previously scheduled messages which σ is equal to or greater than the 

delay to be applied to the new message. By doing so, the hybrid delay function guarantees 

that the latest scheduled message is always the last message in the queue:  

 hybrid(qi, si
′, di(si

′)) = {〈si
′, di(si

′)〉} ∪ {〈y, σ〉 ∈ qi | σ < di(si
′)}. (12) 

Defining a Cell as an Atomic DEVS Model 

In the asymmetric Cell-DEVS formalism, cells are atomic DEVS models. As discussed 

in Section 2, an atomic DEVS model is formally defined with the tuple shown in Eq. (4). 

The input set of the atomic DEVS model corresponding to cell Ci is the union of its 

neighborhood and external inputs sets, while the output set of the DEVS model is the 

output set of the cell: 

 X = Xi
N ∪ Xi

E ; Y = Yi. (13) 

The input neighborhood and output sets are typically composed of tuples {cell ID, cell 

state}. In this way, it is straightforward to deduce which cell generated the event and the 

state change associated with the event. The state of the atomic DEVS model includes the 

current cell state, its output queue, and its neighborhood set (i.e., s = 〈si, qi, Ni〉). The 

time advance function of the atomic model returns the minimum delay of the output 

messages scheduled in the cell output queue: 

 ta(s) = {
min

〈ϑ,σ〉∈qi

σ , qi ≠ ∅

∞       , otherwise
. (14) 

After waiting this time, the cell outputs those scheduled messages for which σ expires. 

Eq. (15) displays the DEVS output function for the cell Ci: 

 λ(s) = {〈Ci, ϑ〉  |  〈ϑ, σ〉 ∈ qi ∧ σ = ta(s)}. (15) 

The internal transition function of the atomic model leaves the cell state as is, updates the 

σ of queued messages, and removes those already sent by the previous λ function: 

 δint(s) = 〈si, {〈ϑ, σ − ta(s)〉  |  〈ϑ, σ〉 ∈ qi  ∧  σ > ta(s)}, Ni〉. (16) 

                  



When the output queue is empty, the cell passivates. Otherwise, it schedules the next 

internal transition using the first element of the queue.  

If Ci  receives inputs x ⊂ X , the external transition function δext(s, e, x)  is 

activated, and it executes the τ function, and computes si
′ = τi(si, Ni, x). Only if the new 

state is different from the previous state (i.e., si ≠ si
′), will the cell schedule a new output. 

Eq. (17) shows the external transition function of the cell. 

 δext(s, e, x) = {
〈si

′, qi
e, Ni〉               , if si

′ = si,

〈si
′, delayi(qi

e, si
′, di(si

′)), Ni〉, otherwise.
 (17) 

Note that it also updates the σ of messages queued in qi by subtracting the time elapsed 

since the previous state transition of the model, and schedules an internal event using the 

first element in the queue: 

 qi
e = {〈ϑ, σ − e〉  |  〈ϑ, σ〉 ∈ qi}. (18) 

The confluent transition function is defined as δcon(s, e, x) = δext(δint(s), 0, x). 

At time t = 0, the state of cell Ci is set to its initial value, si
0, and the output queue 

schedules a message with a delay of 0 so all the cells being influenced by Ci are aware of 

its initial state. In the same way, cell Ci receives messages with the initial state of its 

neighboring cells and triggers its local computation function τi. If the cell transitions to a 

new state, it schedules a new message with the delay provided by the delay function di. 

Otherwise, it passivates and waits for any input. Figure 7 shows a flow chart of the 

behavior of cells in the asymmetric Cell-DEVS formalism. 

3.2. Defining Classic Cellular Models with Asymmetric Cell-DEVS  

Asymmetric Cell-DEVS can model classic grid scenarios as follows: first, each cell in 

the scenario is uniquely identified by its position in the lattice. Then, the vicinity factor 

of neighboring cells corresponds to the distance vector from the cell to the neighboring 

cell. Thus, in the asymmetric Cell-DEVS formalism, a 2-dimensional von Neumann 

neighborhood of range 1 (see Figure 3a) for cell (𝑖, 𝑗) corresponds to the set 𝑁(𝑖,𝑗) =

{〈(𝑖 + 1, 𝑗), (1,0)〉, 〈(𝑖, 𝑗), (0,0)〉, 〈(𝑖, 𝑗 + 1), (0,1)〉, 〈(𝑖 − 1, 𝑗), (−1,0)〉, 〈(𝑖, 𝑗 − 1), (0, −1)〉} . 

Thus, the vicinity factor of one cell over another corresponds to the relative position of 

the prior from the perspective of the latter. 

                  



 

Figure 7. Flow chart of a cell in the asymmetric Cell-DEVS formalism. 

4. Simulation of Asymmetric Cell-DEVS Scenarios with Cadmium  

This section presents a new version of the Cadmium simulator that supports both classic 

and asymmetric Cell-DEVS models. Cadmium is a header-only library written in C++ 

that allows the modeling and simulation of computational models based on the DEVS 

formalism. In this new version of Cadmium, cells are implemented in C++ and the cell 

space is defined using a JSON configuration file. This approach allows us to study 

multiple setups by simply modifying the configuration file, thus avoiding recompilations 

and reducing the overall time required for exploring a scenario. Furthermore, modelers 

can integrate Cell-DEVS models with other DEVS models implemented with Cadmium. 

This new version of Cadmium is publicly available on GitHub (Cárdenas and Trabes, 

2022). Figure 8 shows the simulation lifecycle to explore cellular models with the 

asymmetric Cell-DEVS formalism and the Cadmium simulator. 

First, we need to define a conceptual cellular model describing the system under 

study following the asymmetric Cell-DEVS formalism. The conceptual model is then 

translated into a computational model using the tools provided by the Cadmium library. 

Once we have implemented the corresponding computational model, we can run 

simulations over different scenarios by modifying the JSON configuration file. Then, we 

analyze the simulation results to gain insight into the system under study. 

                  



 

Figure 8. Simulation lifecycle for Cell-DEVS models with Cadmium. 

Here we present the most important features of the API of Cadmium to implement 

computational models of Cell-DEVS scenarios. We also describe the notation used by 

JSON configuration files to define a simulation scenario. In Section 5, we present a use 

case scenario to illustrate how to use Cadmium for developing asymmetric Cell-DEVS 

models. The GitHub repository of the new version of Cadmium contains detailed 

documentation about the API of Cadmium and its implementation details. 

4.1. Modeling Cell-DEVS Scenarios with the Cadmium Library 

Figure 9 displays a simplified UML class diagram of all the elements related to the 

implementation of cells in the Cadmium Cell-DEVS library. The Cell<C,S,V> class is an 

abstract implementation of the behavior of cells as regular DEVS models that follows the 

flowchart shown in Figure 7. The localComputation and outputDelay functions are virtual 

methods and must be overwritten according to the desired behavior of the cell. Both 

methods are constant and cannot modify any field of the cells when they are triggered. 

Instead, the localComputation function receives a copy of the latest state of the cell and 

returns its new state. If the new state is not equal to the previous state, the Cadmium 

library adds this new state to its output queue for further sending to influenced cells. 

The Cadmium Library uses a port-based approach to propagate events from one 

model to another. Cadmium DEVS models have a set of input and output ports. A model 

can send output events by adding a message to one of its output ports. Alternatively, 

models receive input events by reading the messages in its input ports. Cells send 

scheduled state changes to influenced cells via the outputNeighborhood output port. On 

the other hand, cells receive state changes of their neighboring cells via the 

inputNeighborhood port. It is possible to add extra input ports for receiving external input 

events from other DEVS models using the addInPort<T> method, where T corresponds to 

Define conceptual 

cellular model

Cell(s) logic
Coupled Cell-

DEVS model
Main function

Implement computational model

with Cadmium

Define JSON

config. file
Run simulation Analyze results

Explore different scenarios

                  



the data type of the messages supported by the port. When creating a new port, you need 

to provide a unique port ID. Cell-DEVS models cannot add additional output ports, as 

their behavior is constrained to only sending cell state messages. The AsymmCell<S,V> and 

GridCell<S,V> classes are class specializations of the Cell<C,S,V> class for asymmetric 

and symmetric Cell-DEVS cells, respectively. Note that the GridCell<S,V> has a pointer 

to a GridScenario structure. GridScenario structures implement auxiliary methods for 

scenario-related algebraic functions (e.g., computing distances between cells). 

 

Figure 9. Simplified UML class diagram of the Cadmium Cell-DEVS library. 

In the Cadmium Cell-DEVS library, coupled Cell-DEVS models are defined in a JSON 

configuration file that is used to create all the cells and couple them according to the 

neighborhood described in the scenario. CellDEVSCoupled<C,S,V> is an abstract 

                  



implementation of coupled Cell-DEVS models. When a new object of the class 

CellDEVSCoupled<C,S,V> is created, it reads the JSON configuration file and creates every 

cell in the scenario. AsymmCellDEVSCoupled<S,V> and GridCellDEVSCoupled<S,V> are class 

specializations of the CellDEVSCoupled<C,S,V> class for asymmetric and symmetric Cell-

DEVS coupled models, respectively. If required, modelers can add additional input and 

output ports to the coupled Cell-DEVS model to integrate other DEVS models using the 

addInPort<T> and addOutPort methods. Note that the addOutPort method does not have 

a template argument T. This is because the output message type of coupled cell DEVS 

models is constrained to cell state messages only. 

4.2. Configuring Different Scenarios with the JSON Configuration File 

Once the main program is compiled, we can run multiple simulations for different 

scenarios by modifying the input configuration file, without re-compiling the entire 

project. The configuration of the scenario to be simulated is provided via a JSON file. 

The structure of this file depends on whether it defines an asymmetric or classic Cell-

DEVS scenario. We provide examples of how to define Cell-DEVS scenarios with JSON 

configuration files in Section 5. The JSON object named cells is used to configure all 

the cells in the scenario. The default object defines a default configuration for all the 

cells. Inside default, modelers select the configuration of all the cells (e.g., delay type 

function or initial state). Each key inside the cells object (except from default) 

corresponds to an asymmetric cell in the scenario, and its value is a modification to the 

default configuration. Table 1 presents all the fields that cell configuration objects may 

contain in the JSON file for asymmetric Cell-DEVS scenarios. 

Table 1. Cell configuration fields in the JSON file for asymmetric Cell-DEVS models. 

Field name Description 

delay String indicating the cell delay type function. It only can be set to 

"inertial", "transport", or "hybrid". 

model Cell model identifier. It determines the logic implemented by the cell. 

The accepted values depend on the use case. 

state 
Initial cell state. Modelers must provide a function to parse the JSON 

object to a data structure of the corresponding type in C++. 

neighborhood 

Cell neighborhood. Cell neighborhoods are defined in a key-value 

fashion. The key identifies the neighboring cell ID, and the value 

defines the vicinity factor of the neighboring cell over the cell. 

Modelers must provide a function to parse the JSON object to a data 

structure of the corresponding type in C++. This field is optional. 

config 

JSON object with any additional configuration parameters for the cell 

model. This field is optional, and modelers are responsible for parsing 

its content in the cell model constructor method.  

eic 

JSON array that describes EICs. It contains tuples of strings that 

specify these couplings. If eic is [["coupled_p1","cell_p1"]], 

Cadmium will generate an EIC from the input port of the Cell-DEVS 

                  



coupled model with ID coupled_p1 to the input port of the cells 

affected by this configuration with ID cell_p1. This field is optional. 

If Cadmium does not find the ports, it will throw an exception. 

eoc 

JSON array of strings that describes EOCs. These connect the cell state 

output port to the output port of the Cell-DEVS coupled model 

specified in eoc. For instance, if eoc is ["coupled_p2"], the Cadmium 

library will generate an EOC from the cell output port of the cells 

affected by this configuration to the coupled_p2 port of the Cell-DEVS 

coupled model. This field is optional. If Cadmium does not find the 

ports, it will throw an exception. 

For symmetric Cell-DEVS models, the JSON file also describes the spatial properties of 

the scenario. Code 1 shows an example for symmetric Cell-DEVS models. 

Code 1. Example of a JSON configuration file for a symmetric Cell-DEVS scenario. 

 1 { 

 2   "scenario":{ 

 3     "shape": [25, 25], 

 4     "origin": [-12, -12], 

 5   }, 

 6   "cells": { 

 7     "default": <default_cell_configuration>, 

 8     "custom": { 

 9       <custom_cell_configuration>, 

10       "cell_map": [[-12,-12], [-12,12], [12,-12], [12,12]] 

11     }, 

12   } 

13 } 

The scenario object defines the shape of the scenario, as well as the origin cell. It is also 

possible to define whether a scenario is wrapped or not. Table 2 presents all the fields that 

scenario configuration objects may present for symmetric Cell-DEVS scenarios. 

Table 2. Scenario configuration fields in the JSON file for classic Cell-DEVS models. 

Field name Description 

shape 
JSON array of integers representing the shape of the scenario. All the 

numbers in shape must be greater than zero. In the example shown in 

Code 1, the scenario if a lattice of 25 by 25 cells. 

origin 

JSON array of integers representing the origin cell of the Cell-DEVS 

scenario. It must contain the same number of integers as the shape array. 

In the example shown in Code 1, the origin cell is located at (-12, -12). 

If not specified, all the coordinates of the origin cell are set to zero.  

wrapped 
Boolean that indicates whether the cellular model is wrapped or not. If 

not specified, it is set to false. 

Again, the default JSON object inside cells defines the default configuration for all the 

cells in the scenario. If no configuration modifications are provided, all the cells in the 

lattice will be configured with the default values. The rest of the keys inside the cells 

JSON object are also modifications to the default configuration. However, they do not 

                  



correspond directly to any cell. Instead, the cell_map key determines which cells in the 

scenario implement the alternative configuration. In the example shown in Code 1, only 

cells (-12, -12), (-12, 12), (12, -12), and (12, 12) (i.e., the cells at the corners of the 

scenario) are affected by the custom configuration modification. All the remaining cells 

implement the default configuration. 

In symmetric Cell-DEVS scenarios, neighborhoods are described as a list of 

JSON objects. Cadmium provides additional tools to describe different types of 

neighborhoods. Table 3 describes all these neighborhood types, as well as all the 

configuration parameters that modelers can use to describe the neighborhoods. 

Neighborhoods are parsed in the same order as the neighborhood list. Thus, if a cell is 

part of more than one neighborhood in this list, Cadmium will only use the latest vicinity 

and ignore the previous configuration for that neighboring cell. 

Table 3. Neighborhood fields in the JSON file for classic Cell-DEVS models. 

Field name Description 

type 
String that determines the neighborhood type under description. Other 

fields of the neighborhood configuration depend on the neighborhood 

type. Supported neighborhood types are described below. 

vicinity 
Vicinity factor of neighboring cells over the cell under configuration. 

Modelers must provide a function to parse the JSON object to a data 

structure of the corresponding vicinity type in C++. 

Only for neighborhoods with "relative" or "absolute" type 

neighbors 

JSON array with coordinates of all the neighboring cells. In relative 

neighborhood types, these coordinates are relative to the cell under 

configuration. On the other hand, if the neighborhood type is absolute, 

these coordinates refer to the exact location of neighboring cells in the 

scenario. Let us assume that neighbors is set to [[0,0]]. In relative 

neighborhood types, the cell being configured will be neighbor of itself. 

In contrast, in absolute neighborhood types, the cell located at the 

coordinates (0, 0) will be a neighbor of the cell under configuration, 

regardless of the location of the later.  

Only for neighborhoods with "von_neumann" or "moore" type 

range 
Integer indicating the range of the neighborhood. See Figure 3 for more 

details about von Neumann and Moore neighborhoods. 

Only for neighborhoods with "minkowski" type 

p 

Integer indicating which Minkowski distance is used when defining the 

neighborhood. For example, if p is set to 2, the neighborhood uses the 

Euclidean distance to identify neighboring cells. 

range 

Double-precision floating-point number indicating the maximum 

distance between one cell to another to consider the prior a neighbor of 

the later. If p is set to 2 and range is set to 2.5, all the cells of the scenario 

which Euclidean distance to the cell under configuration is less than or 

equal to 2.5 will be considered neighbors. 

                  



5. Using Cadmium to Execute Cell-DEVS Models 

This section illustrates how the Cadmium simulator can be used to define asymmetric and 

classic Cell-DEVS models. In addition, we discuss how to combine Cell-DEVS models 

with other tools for the visualization of the results or the automatic generation of 

scenarios. Here we show how modelers can follow the workflow shown in Figure 8 to 

develop a simple asymmetric Cell-DEVS model of communicable disease. We adapt the 

SIR compartmental model presented in Figure 1 and represent it using the asymmetric 

Cell-DEVS formalism to include spatial considerations in the dynamics of the disease. 

Then, we translate the resulting conceptual model to an equivalent computational model 

implemented with the new version of Cadmium. Finally, we define different JSON 

configuration files to explore different pandemic scenarios. The implementation of the 

presented use cases are included in GitHub (Cárdenas and Trabes, 2022). 

5.1. Conceptual SIR Model Using the Asymmetric Cell-DEVS Formalism 

The state for each cell Ci is represented by the following 4-tuple: 

 si = 〈Pi, Si, Ii, Ri〉, (19) 

where Pi represents the population inhabiting the cell and Si, Ii, and Ri correspond to the 

ratio (from zero to one) of susceptible, infected, and recovered people, respectively. The 

sum of all the compartments must be equal to 1: 

 Si + Ii + Ri = 1. (20) 

Every time the local computation function of a cell is triggered, it transitions to a new 

state s′i = τi(si, Ni, Xi) = 〈Pi, S′i, I′i, R′i〉. The population of the cell remains the same, but 

people transition from one compartment to another as described in Equation (21): 

 

S′i = Si ∙ (1 − ii),                

I′i = Si ∙ ii +  Ii ∙ (1 − γ),

R′
i = Ri + Ii ∙ γ,                   

 (21) 

where γ corresponds to the recovery factor (i.e., the probability of an infected person 

recovering from the disease) and ii represents the ratio of susceptible people that got 

infected since the last time the local computing function was triggered: 

 ii = σ ∙ min {1, ∑ (Vi
j

∙
Pj

Pi
∙ υ ∙  Ij)〈Cj,V

i
j
〉∈Ni

}, (22) 

where σ is the susceptibility factor (i.e., the probability of a susceptible individual getting 

infected if exposed) and υ is the virulence factor (i.e., the probability of an infected person 

                  



exposing others to the illness). In this model, the vicinity factor Vi
j
 corresponds to a real 

number between 0 and 1 that weights how the state of cell Cj influences over the state of 

cell Ci. The way we compute the correlation factor is a configuration parameter of the 

model. In this example, we compute Vi
j
 as the length of the shared border divided by the 

perimeter of the region represented by cell Ci. Finally, we set the output delay function to 

one day (i.e., cells wait for one day before sending their new state to influenced cells). 

5.2. Implementing the Corresponding Computational Model with Cadmium 

After describing the conceptual model under study, we develop a computational model 

with the help of the new version of Cadmium. First, we define the data structure used to 

represent a cell state. Code 2 shows how to implement a data structure for the SIR model. 

Code 2. Definition of cells state data structure. 

 1 #include <iostream> 

 2 #include <nlohmann/json.hpp> 

 3 

 4 using namespace std; 

 5 using namespace nlohmann; 

 6  

 7 struct SIR { 

 8   int p;     // population 

 9   double s;  // susceptible ratio 

10   double i;  // infected ratio 

11   double r;  // recovered ratio 

12   SIR(): p(0), s(1), i(0), r(0) {} 

13 } 

14 

15 bool operator != (const SIR& x, const SIR& y) { 

16   return x.p != y.p || x.s != y.s || x.i != y.i || x.r != y.r; 

17 } 

18 

19 ostream &operator << (ostream& os, const SIR& x) { 

20   os << "<" << x.p << "," << x.s << "," << x.i << "," << x.r << ">"; 

21   return os; 

22 } 

23 

24 void from_json(json& j, SIR& s) { 

25   j.at("p").get_to(s.p); 

26   j.at("s").get_to(s.s); 

27   j.at("i").get_to(s.i); 

28   j.at("r").get_to(s.r); 

29 } 

The structure is defined from lines 7 to 13. It contains all the fields of the 4-tuple shown 

in Equation (19). We need to define a default constructor (see line 12). We also must 

implement the inequality operator (!=) for two cell states (see lines 15 to 17). Cadmium 

uses this inequality operator to check whether the local computation function returned a 

different state. We define the insertion operator (<<) in lines 19 to 22 to configure how 

Cadmium outputs the cell states in the simulation results. Finally, we implement the 

from_json function for our structure (lines 24 to 29). In this way, Cadmium will be able 

to parse the JSON configuration file to create simulation scenarios. 

If we used a complex data structure to represent the vicinity factor between cells, 

we would have to do a similar process as with the cell state structure. However, in this 

                  



example the vicinity factor is represented by a double-precision floating-point number. 

C++ already provides all the required functionalities for this data type. 

Now, we define the cell logic. Code 3 shows how to implement the model with 

Cadmium. As this is an asymmetric Cell-DEVS scenario, our cell model will inherit from 

the AsymmCell class (see Figure 9). In line 6, we select SIR and double data structures as 

the cell state and vicinity factor data types, respectively. In line 7 to 9, we add the 

attributes rec, susc, and vir for the recovery, susceptibility, and virulence factors. These 

are not part of the cell state. However, we want them to be configurable from the JSON 

file. To do so, we parse the config JSON parameter (see Table 1) in the constructor 

function (lines 13 to 15). 

Code 3. Logic of an asymmetric Cell-DEVS cell for a pandemic spread model. 

 1 #include <cadmium/celldevs/asymm/cell.hpp> 

 2 #include <cmath> 

 3  

 4 using namespace cadmium::celldevs; 

 5  

 6 class SIRCell: public AsymmCell<SIR, double> { 

 7   double rec;   // recovery factor 

 8   double susc;  // susceptibility factor 

 9   double vir;   // virulence factor 

10  public: 

11   SIRCell (string& id, shared_ptr<AsymmCellConfig<SIR, double>>& config): 

12   AsymmCell<SIR, double>(id, config) { 

13     config->rawCellConfig.at("rec").get_to(rec); 

14     config->rawCellConfig.at("susc").get_to(susc); 

15     config->rawCellConfig.at("vir").get_to(vir); 

16   } 

17 

18   SIR localComputation(SIR state, 

19       const unordered_map<string, NeighborData<SIR, double>>& neighborhood) 

20   const override { 

21     auto aux = 0 

22     for (const auto& [nId, nData]]: neighborhood) { 

23        SIR s = nData.state; 

24        double v = nData.vicinity; 

25        aux += s->i * s->p * v; 

26     } 

27     auto newI = state.s * susc * min(1, vir * aux / state.p); 

28     auto newR = state.i * recovery; 

29 

30     state.r = std::round((state.r + newR) * 1000) / 1000; 

31     state.i = std::round((state.i + newI - newR) * 1000) / 1000; 

32     state.s = 1 - state.i - state.r; 

33     return state; 

34   } 

35    

36   double outputDelay(const SIR& state) const override { 

37     return 1; 

38   } 

39 } 

Modelers only need to implement the local computation and output delay functions. The 

local computation function corresponds to lines 18 to 34. In lines 21 to 27, we compute 

the ratio of new infections in the cell as defined in Equation (22). We iterate over all the 

neighboring cells as shown in line 22. The neighboring cell ID is nId, and nData contains 

its latest known state and the vicinity factor. Cadmium also allows you to easily access 

the latest known state of neighboring cells, as shown in line 23. This implementation 

                  



feature eases the process of processing incoming messages from neighboring cells. The 

ratio of new recoveries is computed in line 28. Lines 30 to 32 updates the cell state. Note 

that we discretize the compartments to three decimal numbers. The reason for this 

discretization is that we considerably reduce the number of possible states. By 

discretizing the compartments, we disregard small changes, and the cells reach their final 

state faster. Thus, state discretization contributes to shorter (but less precise) simulations. 

However, this discretization is optional. Finally, the output delay function is set to 1 day 

regardless of the input cell state (lines 36 to 38). In this use case scenario, all the cells 

implement the same logic. If we want to describe a special behavior for certain cells, we 

just need to repeat the cell implementation process. 

Now, modelers must implement the coupled Cell-DEVS model. Code 4 shows 

how to implement the model under study using Cadmium. As this is an asymmetric Cell-

DEVS scenario, our Coupled Cell-DEVS model will inherit from the 

AsymmCellDEVSCoupled class (see Figure 9). 

Code 4. Coupled Cell-DEVS model for pandemic spread scenarios. 

 1 #include <cadmium/celldevs/asymm/coupled.hpp> 

 2 

 3 class SIRCoupled: public AsymmCellDEVSCoupled<SIR, double> { 

 4  public: 

 5   SIRCoupled(const string& id, const string& configFilePath): 

 6   AsymmCellDEVSCoupled <SIR, double>(id, configFilePath) {} 

 7 

 8   void addCell(const string& cellId, 

 9          const shared_ptr<AsymmCellConfig<SIR,double>>& conf)const override{ 

10     string cellModel = conf->cellModel; 

11     if (cellModel == "SIR") { 

12       addComponent(SIRCell (cellId, conf)); 

13     } else { 

14      throw bad_typeid(); 

15     } 

16   } 

17 } 

In line 3, we select SIR and double data structures as the cell state and vicinity factor data 

types, respectively. These must be the same for the coupled Cell-DEVS model and for all 

the cell models. Coupled Cell-DEVS models only must map a given cell model ID to its 

corresponding cell model. In our use case, there is only one cell model (the SIR cell class). 

Thus, we only expect the cell model ID to be SIR (see line 11). If so, we add a cell of the 

SIRCell class to the scenario, as shown in line 12. Otherwise, the coupled Cell-DEVS 

model will throw an exception (line 14). 

After implementing all the cell models and the coupled Cell-DEVS model for a 

given scenario, modelers must implement the main function for executing simulations. 

Code 5 shows an example of a main function. When creating a coupled Cell-DEVS 

model, we need to provide a file path to the JSON file with the scenario configuration. In 

this example, this file is in ./scenario_config.json (see line 5). After building the model 

in lines 8 and 9, a Cadmium coordinator is created in line 10 to run the simulations. 

Additionally, it is possible to set a logger to the coordinator to store simulation results in 

a CSV file, as shown in lines 11 and 12. To simulate a scenario, we must execute the 

start, simulate, and stop methods of the coordinator (see lines 13 to 15). It is possible 

                  



to set a maximum simulation time executed by the coordinator. In line 4, we set simTime 

to 1000. When calling the simulate method of the coordinator, we provide this value to 

limit the simulated time to 1000 days. 

The new version of Cadmium eases the development and simulation of 

computational models based on the asymmetric Cell-DEVS formalism. Modelers do not 

have to worry about most of the simulation details, and they can focus on implementing 

the logic of their conceptual models only. The repository of the new Cadmium library 

includes template projects with instructions to implement classic and asymmetric Cell-

DEVS models. Thus, modelers can successfully implement asymmetric Cell-DEVS 

models with basic programming knowledge. 

Code 5. Main program for simulating pandemic spread models in Cadmium. 

 1 #include <cadmium/core/simulation/coordinator.hpp> 

 2 #include <cadmium/core/logger/csv.hpp> 

 3  

 4 double simTime = 1000;  // maximum simulation time 

 5 string configFilePath = "./scenario_config.json";  // path to config file 

 6  

 7 int main() { 

 8   auto model = SIRCoupled("sir_coupled", configFilePath); 

 9   model.buildModel(); 

10   auto coordinator = cadmium::Coordinator(model); 

11   auto logger = std::make_shared<cadmium::CSVLogger>("log.csv"); 

12   coordinator.setLogger(logger); 

13   coordinator.start(); 

14   coordinator.simulate(simTime); 

15   coordinator.stop(); 

16 } 

5.3. Exploring Different Scenarios with JSON Configuration Files 

Once the main program is compiled, we can run multiple simulations for different 

scenarios by modifying the input configuration file, without re-compiling the entire 

project. Let us assume that we want to simulate an asymmetric scenario with three regions 

as shown in Figure 10. All the cells have shared borders with each other. In this example, 

we compute Vi
j
 as the length of the shared border divided by the perimeter of the region 

represented by cell Ci. Thus, all the vicinity factor of every cell over themselves is 1. The 

vicinity factor of C2 and C3 over C1 is 0.25. The vicinity factor of C1 and C3 over C2 is 

0.125. Finally, the vicinity factor of C1 and C2 over C3 is 0.125. The population of cell C1 

is 100 individuals, while the other two cells have 200 inhabitants. By default, all the 

population is susceptible to the disease. However, 10% of the people in cell C3 is infected. 

 

Figure 10. Use case scenario for the asymmetric Cell-DEVS pandemic model. 

C2

C1

C3

                  



Code 6 shows the JSON configuration file for simulating this scenario. There are four 

JSON objects inside the cells JSON object. The default object (lines 3 to 8) determines 

the default configuration of all the cells in the scenario. We use the inertial delay type 

function (line 4). As we have only implemented one cell logic, the cell model type ID of 

all the cells is set to "SIR" (line 5). The coupled Cell-DEVS model will analyze this value 

when creating every cell in the scenario. As it is set to "SIR", the coupled Cell-DEVS 

model will generate a cell of the class SIRCell (see lines11 to 13 of Code 4). By default, 

the initial state of all the cells is set to the value shown in line 6. Cells contain 200 

inhabitants susceptible to the disease. In the config JSON object (line 7), we set other 

model-related configuration parameters. Specifically, we set the recovery factor to 0.2, 

the susceptibility factor to 0.8, and the virulence factor to 0.4. Cells have access to these 

additional configuration parameters in their constructor function. Lines 13 to 15 in Code 

3 parse this JSON object to obtain the values.  

Code 6. Example of a JSON configuration file for an asymmetric Cell-DEVS scenario. 

 1 { 

 2   "cells": { 

 3     "default": { 

 4       "delay": "inertial", 

 5       "model": "SIR", 

 6       "state": {"p": 200, "s": 1, "i": 0, "r": 0}, 

 7       "config": {"rec": 0.2, "susc": 0.8, "vir": 0.4} 

 8     }, 

 9     "c1": { 

10       "state": {"p": 100}, 

11       "neighborhood": {"c1": 1, "c2": 0.25, "c3": 0.25} 

12     }, 

13     "c2": { 

14       "neighborhood": {"c1": 0.125, "c2": 1, "c3": 0.125} 

15     }, 

16     "c3": { 

17       "state": {"s": 0.9, "i": 0.1}, 

18       "neighborhood": {"c1": 0.125, "c2": 0.125, "c3": 1} 

19     } 

20   } 

21 } 

The c1, c2, and c3 JSON objects determine that there are three cells. We modify the 

default configuration parameters depending on each cell. For example, in line 14, we 

determine that C2 has three neighboring cells: C1, C2, and C3, and their vicinity factor 

over C2 is 0.125, 1, and 0.125, respectively. Line 10 sets the population of cell C1 to 100 

people. Finally, in line 17, we set the initial ratio of susceptible and infected people in 

cell C3 to 0.9 and 0.1, respectively. 

Now, we can run the scenario. Simulation results are stored in the log.csv file 

(see line 11 in Code 5). Figure 11 displays the simulation results for first 50 days of the 

presented use case. At the beginning of the simulation, the ratio of susceptible people in 

cells C1 and C2 is 1, while the 10% of the population in cell C3 is infected. The disease 

spreads faster in cell C1, as is has less population than the other cells and the vicinity 

factors of neighboring cells over it is greater than in the rest of cells. These aspects 

negatively affect the ratio of new infections, as shown in Equation (22). The ratio of 

                  



infected people reaches its peak in days 12, 18, and 11 for cells C1, C2, and C3, 

respectively. By the end of the simulation, the ratio of susceptible people for cells C1, C2, 

and C3 drops to 0.05, 0.21, and 0.19, while the ratio of recovered people is 0.95, 0.79, and 

0.81, correspondingly. To run a different scenario (e.g., a lower susceptibility factor due 

to the use of facial mask to stop the spread of the virus), we just must modify the JSON 

configuration file and run the simulation again. 

 

Figure 11. Simulation results of the asymmetric Cell-DEVS use case scenario. 

5.4. Classic Cell-DEVS Scenarios with the Cadmium Cell-DEVS Library 

Let us assume that we now want to explore the scenario shown in Figure 12. In this 

scenario, every cell has 100 individuals susceptible to the disease. However, 10% of the 

population of cell C1,1 (outlined in red) is infected at the beginning of the simulation. 

 

Figure 12. Use case scenario for the classic Cell-DEVS pandemic model. 

In this case, it is more suitable to use the classic Cell-DEVS formalism. The conceptual 

model remains intact, and the implementation in Cadmium only requires minor changes. 

First, the SIRCell class (see Code 3) inherits from GridCell<SIR, double> instead of 

AsymmCell<SIR, double>. On the other hand, the SIRCoupled class inherits from 

GridCellDEVSCoupled<SIR, double> instead of AsymmCellDEVSCoupled<SIR, double>. The 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

R
at

io

Time (days)

S (Cell 1) I (Cell 1) R (Cell 1)

S (Cell 2) I (Cell 2) R (Cell 2)

S (Cell 3) I (Cell 3) R (Cell 3)

C-1,-1 C-1,0 C-1,1

C0,-1 C0,0 C0,1

C1,-1 C1,0 C1,1

                  



rest of the code remains intact. The scenario JSON object (lines 2 to 4) specifies that we 

want a 2-dimensional scenario of 3 by 3 cells. The coordinates of the origin cells are (-1, 

-1). The default cell configuration (lines 6 to 15) is like the previous example. However, 

we define a default neighborhood. In line 12, we define a von Neuman neighborhood of 

range 1 (see Figure 3a). The vicinity factor of all the cells in this neighborhood is set to 

0.25. This vicinity factor matches with the shared border relationship for all the cells in 

this neighborhood except the cell itself. In line 13, we overwrite the von Neumann vicinity 

factor of one cell over itself to keep using the same definition of the vicinity factor. 

Code 7. Example of a JSON configuration file for a classic Cell-DEVS scenario. 

 1 { 

 2   "scenario": { 

 3     "shape": [3, 3], "origin": [-1, -1], "wrapped": false 

 4   }, 

 5   "cells": { 

 6     "default": { 

 7       "delay": "inertial", 

 8       "cell_type": "SIR", 

 9       "state": {"p": 100, "s": 1, "i": 0, "r": 0}, 

10       "config": {"rec": 0.2, "susc": 0.8, "vir": 0.4}, 

11       "neighborhood": [ 

12         {"type": "von_neumann", "vicinity": 0.25, "range": 1}, 

13         {"type": "relative", "vicinity": 1, "neighbors": [[0, 0]]} 

14       ] 

15     }, 

16     "infected": { 

17       "state": {"s": 0.9, "i":  0.1}, 

18       "cell_map": [[1, 1]] 

19     } 

20   } 

21 } 

The infected JSON object (lines 16 to 20) defines an alternative cell configuration that 

sets the initial ratio of infected people to 0.1. The cell_map array indicates that this 

alternative configuration only affects cell (1, 1), while the rest of the scenario uses the 

default configuration. 

5.5. Extending the SIR Model including Geographical Information Systems 

In Cárdenas et al. (2021) we introduced an extended SIRDS compartmental model with 

irregular topologies and multiple infection phases with different recovery factors. In this 

model, individuals that die due to the disease transition to a new D compartment. 

Furthermore, recovered people may lose their immunity and become susceptible to the 

disease again. The population is also divided into age segments. We computed the vicinity 

factor as the length of the shared border divided by the perimeter of the region represented 

by the influenced cell. 

We integrated GIS models with Cadmium for simulation based on real 

geographies. GIS software integrates physical location data with descriptive information 

(e.g., population or weather conditions). With GIS, we can analyze patterns and 

relationships in a geographical context. For example, we can monitor and forecast 

                  



changes to understand trends motivated by geographic characteristics. Figure 13 shows 

the workflow used to conduct these experiments. 

 

Figure 13. GIS integration for asymmetric Cell-DEVS models 

First, a Cell-DEVS scenario generator reads geographical information from a GIS 

database. The generator adds a cell in the Cell-DEVS scenario for every physical location. 

Furthermore, it manipulates the descriptive characteristics of the physical location to 

define their initial state and the vicinity factor of neighboring cells. For the proposed 

SIRDS model, the generator uses population data to generate the initial state of the cells. 

Additionally, it computes relationships between physical locations to determine the cell 

neighborhoods and the vicinity factors to be applied. The resulting asymmetric Cell-

DEVS scenario is stored in a JSON scenario configuration file. Cadmium executes the 

simulation of the scenario and outputs the simulation results. Then, simulation results are 

displayed on a map corresponding to the area under study using GIS tools and 

methodologies. 

Davidson & Wainer (2021) presented an extended compartmental model that 

followed the proposed workflow for integrating GIS models with asymmetric Cell-DEVS 

scenarios. They adapted a GeoJSON file with geographical information about the Ontario 

province to create an asymmetric Cell-DEVS scenario in which each cell corresponds to 

a region of Ontario. For every pair of regions, a vicinity factor was computed as the shared 

border length between regions divided by the total border length of each region. The 

neighborhood of the cell is comprised of all the cells which vicinity factor is greater than 

zero. Simulation results were then adapted to a format compatible with the DEVS Web 

Viewer tool (St-Aubin et al., 2021). This software represents simulation results of 

asymmetric Cell-DEVS scenarios on a map, making it easier to understand and analyze 

simulation results. Figure 14 shows the simulation results of a pandemic scenario over 

the city of Ottawa. 

For each district, the ratio of infected people is displayed in red tones. As 

simulation advances, all the regions turn darker. Darker cells correspond to districts with 

more cases of contagion. Additionally, the authors validated the model and calibrated all 

the configuration parameters (e.g., virulence and recovery rates) to reproduce the effect 

of the COVID-19 disease in Ontario. Simulation results were compared to the reports of 

the Government of Ontario in these regions from January 1st, 2020, to February 2nd, 

2021 for validation and calibration. The structure of Cadmium allowed us to reuse the 

model for exploring multiple scenarios by just modifying the JSON configuration file, 

improving the experimentation phase. 

Geographical

data

Cell-DEVS

generator

Scenario

configuration

Cadmium

simulator

Simulation

results

GIS

visualization

                  



  

Figure 14. GIS visualization of simulation results for asymmetric Cell-DEVS models. 

6. Conclusions  

Cellular models provide a simple means of describing the behavior, dynamics, and 

structure of natural systems with spatial features. While the classic Cell-DEVS formalism 

presents advantages over other approaches (e.g., discrete-event nature, performance, or 

ease of integration with other simulation, visualization, and analysis tools), it is not able 

to effectively model scenarios with irregular topologies. This issue makes modeling 

scenarios based on real geographies a complex and inefficient task. Furthermore, if 

relations other than spatial are needed to be considered (i.e., closeness, friendship, 

political opinions, or other social aspects) classic Cell-DEVS modelers need to interpret 

the results of the cellular model accordingly, which is difficult to perceive. 

We dealt with these issues by introducing the asymmetric Cell-DEVS formalism, 

which extends the classic approach by defining the relationships between cells using a 

graph-based approach. Asymmetric Cell-DEVS combines concepts of CA with 

metapopulation models to capture the behavior of more realistic natural systems using 

cellular models. Neighborhoods do not depend only on spatial associations but on an 

abstract concept called the vicinity factor. The vicinity factor of one cell over another can 

represent any relationship (e.g., spatial relationship, cultural kinship, or any other spatial 

relation) and thus allows modelers to define more complex and realistic cellular scenarios. 

Asymmetric Cell-DEVS is a generalization of classic Cell-DEVS. Therefore, we can still 

model grid-based cellular models. Its discrete-event nature avoids unnecessary 

computations by only triggering the state transition function of active cells. Additionally, 

as it relies on the DEVS formalism, we can easily combine asymmetric Cell-DEVS 

models with other DEVS models. 

We also presented a new version of the Cadmium simulator, which supports the 

development of asymmetric Cell-DEVS models. It provides an API to develop classic 

and asymmetric Cell-DEVS scenarios, focusing on the definition cell behavior. This tool 

is being used for integrating asymmetric Cell-DEVS models with GIS tools, which allows 

to generate realistic Cell-DEVS scenarios based on actual geography data automatically, 

providing means for the analysis of simulation results using advanced visualizations. 

                  



References 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, 

S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., 

Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., 

Yu, Y., Zheng, X., 2016. TensorFlow: A System for Large-Scale Machine 

Learning, in 12th USENIX Symposium on Operating Systems Design and 

Implementation (OSDI 16). USENIX Association, Savannah, GA, pp. 265–283. 

Adiga, A., Dubhashi, D., Lewis, B., Marathe, M., Venkatramanan, S., Vullikanti, A., 

2020. Mathematical Models for COVID-19 Pandemic: A Comparative Analysis. 

J. Indian Inst. Sci. 100, 793–807. https://doi.org/10.1007/s41745-020-00200-6 

Ashlock, D., Kreitzer, M., 2020. Evolving Diverse Cellular Automata Based Level 

Maps, in: Ciancarini, P., Mazzara, M., Messina, A., Sillitti, A., Succi, G. (Eds.), 

Proceedings of 6th International Conference in Software Engineering for 

Defence Applications, Advances in Intelligent Systems and Computing. 

Springer International Publishing, Cham, pp. 10–23. 

https://doi.org/10.1007/978-3-030-14687-0_2 

Baetens, J.M., De Baets, B., 2012. Cellular automata on irregular tessellations. Dyn. 

Syst. 27, 411–430. https://doi.org/10.1080/14689367.2012.711300 

Belloli, L., Vicino, D., Ruiz-Martin, C., Wainer, G., 2019. Building DEVS Models with 

the Cadmium Tool, in 2019 Winter Simulation Conference (WSC). Presented at 

the 2019 Winter Simulation Conference (WSC), IEEE, National Harbor, MD, 

USA, pp. 45–59. https://doi.org/10.1109/WSC40007.2019.9004917 

Bin, S., Sun, G., Chen, C.-C., 2019. Spread of Infectious Disease Modeling and 

Analysis of Different Factors on Spread of Infectious Disease Based on Cellular 

Automata. Int. J. Environ. Res. Public. Health 16, 4683. 

https://doi.org/10.3390/ijerph16234683 

Bray, T., 2017. The JavaScript Object Notation (JSON) Data Interchange Format (RFC 

No. 8259). RFC Editor. 

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S., Schaub, T., 2016. The GeoJSON 

Format (RFC No. 7946). RFC Editor. 

Cárdenas, R., Henares, K., Ruiz-Martín, C., Wainer, G., 2020. Cell-DEVS Models for 

the Spread of COVID-19, in: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.Ch., 

Bandini, S., Podlaski, K. (Eds.), Cellular Automata. ACRI 2020. Lecture Notes 

                  



in Computer Science. Presented at the Cellular Automata for Research and 

Industry, Springer International Publishing, Łódź, Poland, pp. 239–249. 

https://doi.org/10.1007/978-3-030-69480-7_24 

Cárdenas, R., Martin, C.R., Wainer, G., Dobias, P., Rempel, M., 2021. Studying the 

Spread of Diseases Using Geographical Data and Irregular Topologies with 

Cell-DEVS, in 2021 Annual Modeling and Simulation Conference (ANNSIM). 

Presented at the 2021 Annual Modeling and Simulation Conference (ANNSIM), 

IEEE, Fairfax, VA, USA, pp. 1–12. 

https://doi.org/10.23919/ANNSIM52504.2021.9552115 

Cárdenas, R., Trabes, G., 2022. Cadmium 2: An object-oriented C++ M&S platform for 

the PDEVS formalism. [Online; Accessed on: June, 3, 2022] Available at 

https://github.com/SimulationEverywhere/cadmium_v2. 

Chang, K.-T., 2019. Geographic Information System, in: International Encyclopedia of 

Geography. American Cancer Society, pp. 1–10. 

https://doi.org/10.1002/9781118786352.wbieg0152.pub2 

Davidson, G., Wainer, G., 2021. Studying COVID-19 Spread Using a Geography Based 

Cellular Model, in 2021 Winter Simulation Conference (WSC). Presented at the 

2021 Winter Simulation Conference (WSC), IEEE, Phoenix, AZ, USA, pp. 1–

12. https://doi.org/10.1109/WSC52266.2021.9715520 

Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G., Porreca, A.E., 2017. 

Computational complexity of finite asynchronous cellular automata. Theor. 

Comput. Sci. 664, 131–143. https://doi.org/10.1016/j.tcs.2015.12.003 

Fatès, N., 2013. A Guided Tour of Asynchronous Cellular Automata, in: Kari, J., 

Kutrib, M., Malcher, A. (Eds.), Cellular Automata and Discrete Complex 

Systems, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 

Berlin, Heidelberg, pp. 15–30. https://doi.org/10.1007/978-3-642-40867-0_2 

Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P., 1993. A technique for drawing 

directed graphs. IEEE Trans. Softw. Eng. 19, 214–230. 

https://doi.org/10.1109/32.221135 

Gerhardt, M., Schuster, H., 1989. A cellular automaton describing the formation of 

spatially ordered structures in chemical systems. Phys. Nonlinear Phenom. 36, 

209–221. https://doi.org/10.1016/0167-2789(89)90081-X 

Hanski, I., 1994. A Practical Model of Metapopulation Dynamics. J. Anim. Ecol. 63, 

151. https://doi.org/10.2307/5591 

                  



Hanski, I., Simberloff, D., 1997. The Metapopulation Approach, Its History, Conceptual 

Domain, and Application to Conservation, in: Metapopulation Biology. Elsevier, 

pp. 5–26. https://doi.org/10.1016/B978-012323445-2/50003-1 

Hatzikirou, H., Basanta, D., Simon, M., Schaller, K., Deutsch, A., 2012. “Go or Grow”: 

the key to the emergence of invasion in tumour progression? Math. Med. Biol. 

29, 49–65. https://doi.org/10.1093/imammb/dqq011 

Heide-Jørgensen, M.P., Richard, P.R., Dietz, R., Laidre, K.L., 2013. A metapopulation 

model for Canadian and West Greenland narwhals: Narwhal metapopulation. 

Anim. Conserv. 16, 331–343. https://doi.org/10.1111/acv.12000 

Huang, J.-L., Koh, C.-K., Cauley, S.F., 2009. Logic and circuit simulation, in: 

Electronic Design Automation. Elsevier, pp. 449–512. 

https://doi.org/10.1016/B978-0-12-374364-0.50015-1 

Ingerson, T.E., Buvel, R.L., 1984. Structure in asynchronous cellular automata. Phys. 

Nonlinear Phenom. 10, 59–68. https://doi.org/10.1016/0167-2789(84)90249-5 

Janelle, D.G., 2005. Time–Space Modeling, in: Encyclopedia of Social Measurement. 

Elsevier, pp. 851–856. https://doi.org/10.1016/B0-12-369398-5/00347-9 

Kermack, W.O., McKendrick, A.G., 1927. A contribution to the mathematical theory of 

epidemics. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 115, 

700–721. https://doi.org/10.1098/rspa.1927.0118 

Khalil, H., Wainer, G., Dunnigan, Z., 2020. Cell-DEVS Models for CO2 Sensors 

Locations in Closed Spaces, in 2020 Winter Simulation Conference (WSC). 

Presented at the 2020 Winter Simulation Conference (WSC), IEEE, Orlando, 

FL, USA, pp. 692–703. https://doi.org/10.1109/WSC48552.2020.9383937 

Muneepeerakul, R., Weitz, J.S., Levin, S.A., Rinaldo, A., Rodriguez-Iturbe, I., 2007. A 

neutral metapopulation model of biodiversity in river networks. J. Theor. Biol. 

245, 351–363. https://doi.org/10.1016/j.jtbi.2006.10.005 

Murray, A.B., Paola, C., 1994. A cellular model of braided rivers. Nature 371, 54–57. 

https://doi.org/10.1038/371054a0 

Muzy, A., Innocenti, E., Aiello, A., Santucci, J.F., Wainer, G., 2005. Specification of 

discrete event models for fire spreading. Simulation 81, 103–117. 

https://doi.org/10.1177/0037549705052230 

Sonnenschein, M., Vogel, U., 2001. Asymmetric cellular automata for the modelling of 

ecological systems, in: Sustainability in the Information Society. Presented at 

the EnviroInfo. 

                  



St-Aubin, B., Menard, J., Wainer, G., 2021. A Web Based Modeling and Simulation 

Environment to Support the DEVS Simulation Lifecycle, in 2021 Annual 

Modeling and Simulation Conference (ANNSIM). Presented at the 2021 Annual 

Modeling and Simulation Conference (ANNSIM), IEEE, Fairfax, VA, USA, pp. 

1–12. https://doi.org/10.23919/ANNSIM52504.2021.9552123 

Stroustrup, B., 2013. The C++ programming language, Fourth edition. ed. Addison-

Wesley, Upper Saddle River, NJ. 

Tang, L., Zhou, Y., Wang, L., Purkayastha, S., Zhang, L., He, J., Wang, F., Song, P.X. ‐

K., 2020. A Review of Multi‐Compartment Infectious Disease Models. Int. Stat. 

Rev. 88, 462–513. https://doi.org/10.1111/insr.12402 

Tariq, J., Kumaravel, A., 2016. Construction of cellular automata over hexagonal and 

triangular tessellations for path planning of multi-robots, in 2016 IEEE 

International Conference on Computational Intelligence and Computing 

Research (ICCIC). Presented at the 2016 IEEE International Conference on 

Computational Intelligence and Computing Research (ICCIC), IEEE, Chennai, 

pp. 1–6. https://doi.org/10.1109/ICCIC.2016.7919686 

Toffoli, T., Margolus, N., 1987. Cellular Automata Machines: A New Environment for 

Modeling, MIT Press series in scientific computation. MIT Press, Cambridge, 

Mass. 

Vangheluwe, H., 2000. DEVS as a common denominator for multi-formalism hybrid 

systems modelling, in: Proceedings of the IEEE International Symposium on 

Computer-Aided Control System Design. Presented at the IEEE International 

Symposium on Computer-Aided Control Systems Design, IEEE, Anchorage, 

AK, USA, pp. 129–134. https://doi.org/10.1109/CACSD.2000.900199 

Wainer, G., 2009. Discrete-event modeling and simulation: a practitioner’s approach, 

Computational analysis, synthesis, and design of dynamic models series. CRC 

Press, Boca Raton. 

Wainer, G., 2006. Applying Cell-DEVS Methodology for Modeling the Environment. 

SIMULATION 82, 635–660. https://doi.org/10.1177/0037549706073698 

Wainer, G., 2002. CD++: a toolkit to develop DEVS models. Softw. Pract. Exp. 32, 

1261–1306. https://doi.org/10.1002/spe.482 

Wainer, G., Giambiasi, N., 2001. Timed Cell-DEVS: Modelling and Simulation of Cell 

Spaces, in: Discrete Event Modeling and Simulation Technologies. pp. 187–214. 

                  



Wang, S., Van Schyndel, M., Wainer, G., Rajus, V.S., Woodbury, R., 2012. DEVS-

based Building Information Modeling and simulation for emergency evacuation, 

in: Proceedings - Winter Simulation Conference. IEEE. 

https://doi.org/10.1109/WSC.2012.6465087 

Ward, D.P., Murray, A.T., Phinn, S.R., 2000. A stochastically constrained cellular 

model of urban growth. Comput. Environ. Urban Syst. 24, 539–558. 

https://doi.org/10.1016/S0198-9715(00)00008-9 

Watts, D.J., Muhamad, R., Medina, D.C., Dodds, P.S., 2005. Multiscale, resurgent 

epidemics in a hierarchical metapopulation model. Proc. Natl. Acad. Sci. 102, 

11157–11162. https://doi.org/10.1073/pnas.0501226102 

Wolfram, S., 2002. A new kind of science. Wolfram Media, Champaign, IL. 

Wolfram, S., 1984. Cellular automata as models of complexity. Nature 311, 419–424. 

https://doi.org/10.1038/311419a0 

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of modeling and simulation: 

integrating discrete event and continuous complex dynamic systems, 2nd ed. ed. 

Academic Press, San Diego. 

Zhong, S., Huang, Q., Song, D., 2009. Simulation of the spread of infectious diseases in 

a geographical environment. Sci. China Ser. Earth Sci. 52, 550–561. 

https://doi.org/10.1007/s11430-009-0044-9 

 

                  


